В секонд хенде полно интересных находок. Это настоящий клондайк для тех, кто ищет уникальные вещи по доступным ценам (15 фото)
Здесь можно найти винтажную одежду, брендовые вещи в отличном состоянии и даже дизайнерские предметы интерьера.
Random Number Generation (RNG) is the process of generating a sequence of numbers that cannot be reasonably predicted better than by random chance. RNG is used in various applications, including cryptography, gaming, statistical sampling, and simulations. There are two main types of random number generators: true random number generators (TRNG) and pseudorandom number generators (PRNG).
Examples:
Common PRNG Algorithms:















скачать dle 12.1
Посещение секонд хенда – это своего рода приключение. Никогда не знаешь, что именно попадется на глаза. Можно случайно наткнуться на раритетную кожаную куртку или необычное платье, которое идеально подойдет для вечеринки.
Главное – запастись терпением и быть готовым к тщательному поиску. Ведь среди множества вещей скрываются настоящие сокровища. И когда находишь что-то действительно стоящее, испытываешь невероятное удовлетворение. Это как выиграть в лотерею, только вместо денег получаешь уникальную вещь, которая будет радовать тебя долгие годы.
Random Number Generation (RNG) is the process of generating a sequence of numbers that cannot be reasonably predicted better than by random chance. RNG is used in various applications, including cryptography, gaming, statistical sampling, and simulations. There are two main types of random number generators: true random number generators (TRNG) and pseudorandom number generators (PRNG).
1. True Random Number Generators (TRNG)
True random number generators derive their randomness from physical processes, such as electronic noise, radioactive decay, or atmospheric noise. Because they rely on inherently unpredictable physical phenomena, TRNGs can produce numbers that are genuinely random.Examples:
- Hardware devices that measure thermal noise in resistors.
- Quantum random number generators that utilize quantum phenomena.
2. Pseudorandom Number Generators (PRNG)
Pseudorandom number generators use mathematical algorithms to produce sequences of numbers that appear random. While these sequences can be statistically random, they are deterministic and will eventually repeat. PRNGs are generally faster and easier to implement than TRNGs.Common PRNG Algorithms:
- Linear Congruential Generator (LCG): A simple and widely used PRNG defined by the recurrence relation:
Xn+1=(aXn+c)modm
where a, c, and m are constants, and Xn is the current random number. - Mersenne Twister: A widely used PRNG known for its long period (2^19937?1) and high quality of randomness.
Applications of Random Number Generation
- Cryptography: Secure key generation and encryption algorithms rely on high-quality random numbers.
- Gaming: Fairness in games, lotteries, and gambling requires random number generation to ensure unpredictable outcomes.
- Simulations: Random numbers are essential for Monte Carlo simulations, where they help model complex systems and processes.
- Statistical Sampling: Random samples from populations are crucial for accurate statistical analysis.
Conclusion
Random number generation is a fundamental aspect of many fields, and understanding the differences between TRNGs and PRNGs is essential for selecting the appropriate method for any given application. The choice between true and pseudorandom generation often depends on the required level of randomness, speed, and resource availability.














